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ABSTRACT

Humans are cognitive misers because their basic tendency is to default to
processing mechanisms of low computational expense. Such a tendency leads
to suboptimal outcomes in certain types of hostile environments. The
theoretical inferences made from correct and incorrect responding on heuristics
and biases tasks have been overly simplified, however. The framework
developed here traces the complexities inherent in these tasks by identifying
five processing states that are possible in most heuristics and biases tasks. The
framework also identifies three possible processing defects: inadequately
learned mindware; failure to detect the necessity of overriding the miserly
response; and failure to sustain the override process once initiated. An
important insight gained from using the framework is that degree of mindware
instantiation is strongly related to the probability of successful detection and
override. Thus, errors on such tasks cannot be unambiguously attributed to
miserly processing — and correct responses are not necessarily the result of
computationally expensive cognition.
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Introduction

That humans are cognitive misers has been a major theme throughout the
past 50 years of research in psychology and cognitive science (see Dawes,
1976; Kahneman, 2011; Shah & Oppenheimer, 2008; Simon, 1955, 1956;
Taylor, 1981; Tversky & Kahneman, 1974). When approaching any problem,
our brains have available various computational mechanisms for dealing with
the situation. These mechanisms embody a trade-off, however (Rand, Tomlin,
Bear, Ludvig, & Cohen, 2018; Tomlin, Rand, Ludvig, & Cohen, 2015). The trade-
off is between power and expense. Some mechanisms have great computa-
tional power - they can solve a large number of novel problems. However,
these mechanisms take up a great deal of attention, tend to be slow, tend to

CONTACT Keith E. Stanovich @ keith.stanovich@utoronto.ca
© 2018 Informa UK Limited, trading as Taylor & Francis Group


http://crossmarksupport.crossref.org/?doi=10.1080/13546783.2018.1459314&domain=pdf
mailto:keith.stanovich@utoronto.ca
https://doi.org/10.1080/13546783.2018.1459314
http://www.tandfonline.com

424 K. E. STANOVICH

interfere with other thoughts and actions we are carrying out, and they
require great concentration that is often experienced as aversive (Kahneman,
1973; Kurzban, Duckworth, Kable, & Myers, 2013; Navon, 1989; Westbrook &
Braver, 2015).

Humans are cognitive misers because their basic tendency is to default to
processing mechanisms of low computational expense. Humorously, Hull
(2001) has said that “the rule that human beings seem to follow is to engage
the brain only when all else fails—and usually not even then” (p. 37). More
seriously, Richerson and Boyd (2005) have put the same point in terms of its
origins in evolution: “In effect, all animals are under stringent selection pres-
sure to be as stupid as they can get away with” (p. 135). Miserly cognitive ten-
dencies have evolved for reasons of computational efficiency. But that same
computational efficiency simultaneously guarantees that humans will be less
than perfectly rational.

Miserly processing and human evolution

Of course, evolution guarantees human rationality in the dictionary sense of
“the quality or state of being able to reason” because evolution built the
human brain. What is meant here is that evolution does not guarantee perfect
rationality in the sense the term is used throughout cognitive science - as
maximising subjective expected utility. In contrast to maximisation, natural
selection works on a “better than” principle. As Dawkins (1982) puts it:

Natural selection chooses the better of present available alternatives... .The ani-
mal that results is not the most perfect design conceivable... .It is the product of
a historical sequence of changes, each one of which represented, at best, the
better of the alternatives that happened to be around at the time. (p. 46)

The variation and selective retention logic of evolution “designs” for the
reproductive advantage of one organism over the next, not for the optimality
of any one characteristic (including rationality). Natural selection is geared to
immediate advantage rather than long-term strategy. Human rationality, in
contrast, must incorporate the long-term interests of the individual and thus
it can diverge from the short-term strategies of evolutionary adaptation (Ain-
slie, 2001; de Sousa, 2007; Loewenstein, 1996; Nozick, 1993; Stanovich, 2004).

Organisms have evolved to increase the reproductive fitness of genes, not
to increase the rationality of humans, and increases in fitness do not always
entail increases in rationality. For example, beliefs need not always track the
world with maximum accuracy in order for fitness to increase. Evolution might
fail to select out epistemic mechanisms of high accuracy when they are costly
in terms of organismic resources (for example, in terms of memory, energy or
attention). A second reason that belief-forming mechanisms might not be
maximally truth preserving is that:
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a very cautious, risk-aversive inferential strategy—one that leaps to the conclu-
sion that danger is present on very slight evidence—will typically lead to false
beliefs more often, and true ones less often, than a less hair-trigger one that
waits for more evidence before rendering a judgment. Nonetheless, the unreli-
able, error-prone, risk-aversive strategy may well be favored by natural selection.
For natural selection does not care about truth; it cares only about reproductive
success. (Stich, 1990, p. 62)

It is likewise in the domain of goals and desires. The purpose of evolution was
not to maximise the happiness of human beings. As has become clear from
research on affective forecasting (Gilbert, 2006; Kahneman, 2011), people are
remarkably bad at making choices that make themselves happy. This should
be no surprise. The reason we have pleasure circuits in our brains is to encour-
age us to do things (survive and reproduce, help kin) that propagate our
genes. The pleasure centres were not designed to maximise the amount of
time we are happy.

The instrumental rationality of humans is not guaranteed by evolution for
two further reasons. First, many genetic goals that have been lodged in our
brain no longer serve our ends because the environment has changed. For
example, our mechanisms for storing and utilising energy evolved in times
when fat preservation was efficacious. These mechanisms no longer serve
the goals of people in our modern technological society where there is a
McDonald’s on practically every corner. The goals underlying these mecha-
nisms have become detached from their evolutionary context (Li, van Vugt,
& Colarelli, 2018). Finally, the cultural evolution of rational standards is apt to
occur at a pace markedly faster than that of human evolution (Richerson &
Boyd, 2005; Stanovich, 2004) - thus providing ample opportunity for mecha-
nisms of utility maximisation to dissociate from local genetic fitness
maximisation.

Thus, our evolutionary history does not guarantee that all of the miserly
processing defaults in our brain result in optimal processing. Many of these
evolutionary defaults of the cognitive miser were “good enough” in their day
(our environment of evolutionary adaptation of thousands of years ago), but
might not be serving us well now when our environments have radically
changed. They were not designed for the type of situation in modern society
that call for fine-grained analysis such as financial decisions, fairness judge-
ments, employment decisions, legal judgements, etc.

Miserly processing in benign and hostile environments

For the reasons just outlined, it is clear why miserly processing ensures that at
least some non-optimal behaviour will be produced. None of this is meant to
deny that, on a token basis, miserly processing is astonishingly useful. Never-
theless, the benefits and costs of miserly processing depend on the nature of
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the environment. For maximum effectiveness, miserly processing requires
benign environments that contain cues that elicit practiced, adaptive behav-
iours. In hostile environments, however, defaulting to miserly processing can
be costly. A benign environment is one that contains useful (that is, diagnos-
tic) cues that can be exploited by various heuristics (for example, affect-trig-
gering cues, vivid and salient stimulus components, convenient and accurate
anchors). Additionally, for an environment to be classified as benign, it must
also contain no other individuals who will adjust their behaviour to exploit
those relying on miserly processing.

In contrast, a hostile environment is one in which there are few cues that
are usable by fast-acting autonomous processes or one that presents mislead-
ing cues (Kahneman & Klein, 2009). Another way that an environment can
turn hostile occurs when other agents discern the simple cues that are being
used to trigger miserly defaults and arrange them for their own advantage
(for example, advertisements, or the strategic design of supermarket floor
space in order to maximise revenue).

Thus, we only want to engage in miserly processing when in benign envi-
ronments. Our responses might be suboptimal when we default to miserly
processing in a hostile environment. As Kahneman and Frederick (2002) have
argued, humans often act as cognitive misers by engaging in attribute substi-
tution — the substitution of an easy-to-evaluate characteristic for a harder
one, even if the easier one is less accurate. For example, the cognitive miser
will substitute the less effortful attributes of vividness or affect for the more
effortful retrieval of relevant facts (Kahneman, 2003; Li & Chapman, 2009;
Slovic & Slovic, 2015; Wang, 2009). But when we are evaluating important
financial decisions — buying a home or a obtaining a mortgage or insurance -
we do not want to substitute vividness for careful thought about the situa-
tion. Modern society keeps proliferating such situations where shallow proc-
essing is not sufficient for maximising personal happiness. These situations
are increasing in frequency because many structures of market-based socie-
ties have been designed explicitly to exploit miserly tendencies. Being cogni-
tive misers in these situations will seriously impede people from achieving
their goals (see Stanovich, 2004).

Heuristics and biases tasks were designed to assess costly miserly
defaults in hostile worlds

The primary tasks used to assess miserly processing have been drawn from
the so-called heuristics and biases tradition inaugurated by Kahneman and
Tversky in the early 1970s (Kahneman &Tversky, 1972, 1973; Tversky & Kahne-
man, 1974). The term biases refers to the defaults that lead people to make
systematic errors in choosing actions and in estimating probabilities. The
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term heuristic refers to why people often make these errors: they use mental
shortcuts (heuristics) to solve many problems. In short, the tasks developed in
this literature were designed to tap the tendency towards miserly information
processing. It is especially important to realise, though, that this assessment
of miserly processing takes place in the context of a deliberately contrived
hostile environment.

That heuristics and biases tasks are deliberately designed to be hostile
environments for the miserly processer is one of the things that make them
psychologically interesting and highly diagnostic of the dynamics of human
reasoning. It is a key feature that makes heuristics and biases task items differ-
ent from typical 1Q test items which present much more benign task environ-
ments. For example, intelligence tests contain salient warnings that more
than miserly processing is necessary. It is clear to someone taking an intelli-
gence test that fast, automatic, intuitive processing will not lead to superior
performance. Most heuristics and biases tasks do not strongly cue the subject
in this manner. Instead, many such tasks suggest a compelling intuitive
response that happens to be wrong. In heuristics and biases tasks, unlike the
case for intelligence tests, the subject must detect the inadequacy of the intu-
itive response that is triggered with little effort. They must then suppress this
response while selecting a better alternative.

It is not only the presence of an enticing lure response that distinguishes
many heuristics and biases tasks from 1Q test items. Additionally, the demand
characteristics of 1Q tests pretty much guarantee that the subject will be work-
ing at maximum efficiency on a problem that is unambiguously framed by its
instructions. This is unlike heuristics and biases tasks where the subject must
often choose a particular construal. The fact that many heuristics and biases
tasks can be construed by the subject in different ways (a statistical interpre-
tation versus a narrative interpretation, for instance) is often seen as a weak-
ness of such tasks when in fact it is the design feature that makes the task
diagnostic. In a probabilistic reasoning task from this literature, the entire
point is to see how dominant or non-dominant the statistical interpretation is
over the narrative interpretation. Likewise, the fact that many such problems
have an intuitively compelling wrong answer is often seen as a misleading
attempt to “trick” the participant. In fact, the presence of the compelling intui-
tive response is precisely what makes the problem diagnostic of the propen-
sity to avoid miserly processing.

It is in this sense that the so-called artificiality of heuristics and biases
tasks is a strength and not a weakness. It is a design feature, not a bug,
because the modern world is, in many ways, becoming hostile for individ-
uals relying solely on miserly processing. Einhorn and Hogarth (1981)
long ago made the telling point that: “in a rapidly changing world it is
unclear what the relevant natural ecology will be. Thus, although the
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laboratory may be an unfamiliar environment, lack of ability to perform
well in unfamiliar situations takes on added importance” (p. 82). Their
point is that it is wrong to imply that because heuristics and tasks are
abstract and not like “real life” then we need not worry that people do
poorly on them. The issue is that, ironically, the argument that these lab-
oratory tasks are not like “real life” is becoming less and less true. “Life”,
in fact, is becoming more like the tasks!

Of course, it should not be inferred that miserly processing always leads us
astray. As previously discussed, heuristics often give us a useful first approxi-
mation to the optimal response in a given situation, and they do so without
stressing cognitive capacity. But we must not lose sight of the fact that the
usefulness of the heuristics that we rely upon to lighten the cognitive load
are dependent on a benign environment. In contrast, the environments of
modern life in a technological society are often not benign. In modern life, we
often must: decide which health maintenance organisation to join based on
abstract statistics rather than experienced frequencies; decide on what type
of mortgage to purchase; figure out what type of deductible to get on our
auto insurance; decide whether to trade in a car or sell it ourselves; decide
whether to lease or to buy; and think about how to apportion our retirement
funds. These are just a few of the plethora of modern-day decisions and
choices that are best made by not being miserly in our information
processing.

The importance of knowledge structures (mindware) in
understanding heuristics and biases tasks

Miserly processing, as well as heuristics and biases tasks, are much discussed
in the literature on dual-process theories (Kahneman, 2011), but it is impor-
tant to understand that the concept of miserly information processing is not
necessarily tied to such models. As a processing characteristic, it will emerge
as an issue whatever cognitive architecture is proposed (Arkes, 2016;
De Neys, 2018; Newman, Gibb, & Thompson, 2017; Oaksford & Chater, 2014;
Reyna & Brainerd, 2011; Sun, 2015). Likewise, whatever the architecture
adopted, knowledge structures will be implicated in task performance. That
is, to successfully avoid miserly processing in hostile situations, both proce-
dural skills and declarative knowledge are required. For example, Kahneman
and Frederick’s (2002) concept of attribute substitution was mentioned previ-
ously — miserly processing carried out via the substitution of an easy-to-
evaluate characteristic for a harder one (even if the easier one is less accurate).
If attribute substitution is to be avoided, it is necessary that the inadequacy of
the substituted attribute be detected - and the possibility of responding
based on a more diagnostic attribute must be recognised. This so-called
detection process' must be followed by inhibitory processes that suppress
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the intuitive, miserly response. These inhibitory processes are often termed
the override mechanism.

Detection and override are the processing components of successful
avoidance of attribute substitution. Often ignored in the literature is that suc-
cessful performance on heuristics and biases tasks is dependent on stored
knowledge of various types. These knowledge bases, rules, procedures and
strategies have been referred to as mindware, a term coined by David Perkins
in a 1995 book (Clark (2001) uses the term in a slightly different way from Per-
kins' original coinage). The mindware necessary to perform well on heuristics
and biases tasks is disparate, encompassing knowledge in the domains of
probabilistic reasoning, causal reasoning, scientific reasoning and numeracy.

In the study of heuristics and biases tasks, researchers have tended to
emphasise their processing requirements and have not paid enough atten-
tion to the knowledge component in such tasks. Even more importantly,
researchers have failed to realise how the knowledge component of such
tasks interacts with the processing components. The critique of the heuristics
and biases literature that follows is not meant to deny the enormous progress
that has been made in understanding these tasks in the last 10 years
(De Neys, 2014, 2018; De Neys & Glumicic, 2008; Evans, 2007, 2008, 2010,
2014; Ferreira, Mata, Dokin, Sherman, & Ihmels, 2016; Pennycook, Fugelsang,
& Koehler, 2015; Stanovich, 2011; Stanovich & West, 2008; Thompson, 2014;
Thompson & Johnson, 2014; Thompson & Morsanyi, 2012). For example, the
important distinction between detection and override has been explored
both theoretically and empirically in a way that makes clear how the earlier lit-
erature was mistakenly fusing these two critical concepts (De Neys & Glumicic,
2008; Stanovich & West, 2008). Nevertheless, this theoretical attention to dis-
tinguishing detection from override - itself of substantial scientific impor-
tance — may have contributed to a particular skewed view of heuristics and
biases tasks: that they are pure indicators of miserly processing.

This assumption that the tasks involved are pure indicators of miserly proc-
essing has been a theoretically confusing aspect of the heuristics and biases
literature. It has led to the widespread tendency in the literature to treat such
tasks as if they do not involve learned mindware. This has been particularly
true of discussions of Frederick’s (2005) Cognitive Reflection Test (CRT) which

'For the purposes of this essay, the term detection is used in the most ecumenical sense, in that it is not
my purpose here to adjudicate among specific models of conflict assessment and resolution. The issues
that | wish to address in this paper apply to both of the major dual-processing architectures that have
been discussed in the literature — the default-interventionist architecture and parallel architectures (De
Neys, 2012; Evans & Stanovich, 2013; Sloman, 1996). However, the present paper’s emphasis on moving
towards a more continuous concept of mindware presence is most compatible with the more recent
default-interventionist architectures that emphasise the presence of multiple, conflicting Type 1 outputs
(Bago & De Neys, 2017; De Neys, 2012; Pennycook, Fugelsang, & Koehler, 2015). Such architectures rely
on automatic mechanisms that monitor conflict and that become bottom-up triggers of Type 2 processing
(see Pennycook et al.,, 2015; Thompson, 2009, 2014; Thompson & Morsanyi, 2012).
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is often treated as if it is a pure measure of miserly processing, even though
work for some years now has shown that it is psychometrically complex
(involving dispositions and numeracy, as well as cognitive capacity; see Liber-
ali, Reyna, Furlan, Stein, & Pardo, 2012; Sinayev & Peters, 2015; Toplak, West, &
Stanovich, 2011, 2014).

Virtually all of the tasks in the heuristics and biases literature involve mind-
ware — some more than others (for a taxonomy, see Stanovich, West, & Toplak,
2016). This means that how well the relevant mindware is instantiated in
memory will affect the performance observed on the task. The task will not
just be an indicator of miserly processing but will also be an indicator of the
depth of learning of the relevant mindware as well. This caution regarding
these tasks is not just for the theorist employing dual-process theory. It will
also hold for research using other cognitive architectures as frameworks (De
Neys, 2018; Newman et al,, 2017; Oaksford & Chater, 2014).

As a result of ignoring the role of mindware, many researchers treat heuris-
tics and biases tasks as pure measures of miserly processing when in fact they
are complex indicators. This leads to many conceptual errors being intro-
duced into the literature (Evans, 2018). One that has become quite common
is the assumption that dual process theories imply that all errors must be fast
(the result of miserly processing) and that all correct responses must be slow
(Achtziger & Alos-Ferrer, 2014; Jimenez, Rodriguez-Lara, Tyran, &Wengstrom,
2018; Moore, 2017). Figure 1, which employs a dual-process architecture intro-
duced by Stanovich (2011), shows clearly that this inference does not follow.
In the upper right of the figure is displayed the case that is over-represented
in our literature. In the case represented there, a non-normative response
from the autonomous mind (the so-called System 1 processes; see Kahneman,
2011; Stanovich, 1999) has been interrupted and the computationally taxing
process of simulating an alternative response is underway. That simulation
involves the computationally expensive process of accessing mindware for
the simulation.

In contrast to this type of mindware access, indicated in the lower left of
Figure 1 is a qualitatively different way that mindware can lead to a normative
response. The figure indicates that within System 1 can reside normative rules
and rational strategies that have been practiced to automaticity and that can
automatically compete with (and often immediately defeat) any alternative
non-normative response.

This idea is not new. The category of autonomous processing in cognitive
science has long included the automatic triggering of overlearned rules
(LaBerge & Samuels, 1974; Moors & De Houwer, 2006; Posner & Snyder, 1975;
Shiffrin & Schneider, 1977). That is, automatised subprocesses include not
only Fodorian (1983) modules, but in addition include many rules, stimulus
discriminations and decision-making principles that have been practised to
automaticity (Kahneman & Klein, 2009; Shiffrin & Schneider, 1977). However,
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Figure 1. A simplified model showing both automatised mindware and mindware acces-
sible during simulation.

System 1 contains the products of implicit learning as well. Much automatic
associative learning becomes highly compiled and autonomously triggered
from System 1, in addition to rules that are consciously practised. In short, not
all knowledge in System 1 is automated through conscious practice, because
some knowledge learned implicitly can become automated as well. Chapter 3
of Evans (2010) contains a discussion of how implicit associative knowledge
can become stored in System 1.

The main purpose of Figure 1 is to concretely illustrate the idea that the
normative mindware of correct responding is not exclusively retrieved during
simulation activities, but can become implicated in performance directly and
automatically from System 1 if it has been practiced enough. Some statistics
instructors, for example, become unable to empathise with their students for
whom the basic probability axioms are not transparent. The instructor can no
longer remember when these axioms were not primary intuitions.

The instantiation of the normative mindware in System 1 will affect, for
example, the feeling-of-rightness judgement that Thompson (2009, 2014)
and Thompson, Prowse Turner, and Pennycook (2011) have shown is a bot-
tom-up monitoring mechanism that has implications for performance on heu-
ristics and biases tasks — especially if understood within the context of recent
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default-interventionist architectures that emphasise the presence of multiple,
conflicting Type-1 outputs (Bago & De Neys, 2017; Pennycook et al., 2015).
The feeling-of-rightness output from the intuitive response might be lowered
by the presence of the conflicting normative mindware in System 1, perhaps
to a level that would initiate override and decoupling operations (Stanovich &
Toplak, 2012). In the extreme, the feeling-of-rightness output of the norma-
tive mindware itself might reach a level so high that it is emitted as an auto-
matic response from System 1 (see discussion below).

So it should be clear from Figure 1 that it does not follow from the output
of a normative response that Type-2 processes were necessarily the genesis
of the correct responding. Thus, it does not follow that a rapid response
should necessarily be an incorrect one. Several recent papers have provided
empirical evidence that rapid responses are not necessarily incorrect (Bago &
De Neys, 2017; Newman et al,, 2017; Trippas, Handley, Verde, & Morsanyi,
2016).

Figure 1 illustrates why the assumption that correct responses must neces-
sarily be slow does not follow. Normative mindware of correct responding is
not exclusively retrieved during simulation activities, but can become impli-
cated in performance directly and automatically from System 1 if it has been
practised enough. As we will see in the next section, the presence of auto-
mated mindware in System 1 complicates the interpretation of performance
on heuristics and biases tasks.

In the remainder of this article, | will sketch some of the complex interac-
tions between mindware, detection and override in heuristics and biases
tasks. Importantly, the conclusion will be that these concepts are more inter-
twined than typically realised. These tasks have led to many important behav-
ioural insights (Kahneman, 2011; Thaler, 2015) but, from a processing point of
view, they are not pure indicators of any precise processing concept (such as
miserly processing, for example). They are instead complex entities and they
differ greatly from each other. In the sketch of the interdependence of mind-
ware, detection and override that follows, a dual-process perspective will be
adopted, but the points illustrated are applicable across a number of different
architectures (De Neys, 2018; Newman et al.,, 2017; Oaksford & Chater, 2014).

The interdependence of mindware, detection and override

It is important to understand that the presence of mindware, detection of the
need for override and sustained override capability are concepts that are
intertwined in important ways. Here we will consider several such dependen-
cies, each of increasing complexity.

First, the relevant (that is, normatively appropriate) mindware must be
available to potentially come into conflict with the miserly response. Conflict
detection abilities will not be assessed if the mindware necessary to generate
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a conflicting response is not present. Other conflicts may of course still occur
(for example, between the intuitive response and inappropriate mindware
that is retrieved).

If the relevant mindware is in fact available, then detection of conflict is at
least possible. However, even if the relevant mindware is present, if the sub-
ject does not detect any reason to override the intuitive response, then sus-
tained override capability will not come into play in this instance. In short,
whether or not a task (for a given person) assesses certain “downstream”
capabilities (sustained override) depends on whether certain “upstream”
capabilities (conflict detection, presence of mindware) are present.

Note in particular the trade-off-type relationship between the failure of
override and the absence of mindware. In any taxonomy of errors in heuristics
and biases tasks (Stanovich et al., 2016), these two error types2 will be related
to each other. The two errors are contingent on how well learned the mind-
ware is. Errors made by someone with well-learned mindware are more likely
to be due to override failure. Conversely, override errors are less likely to be
attributed to people with little, or poorly learned, mindware installed. Of
course, the two categories trade off in a continuous manner with an indistinct
boundary between them. A well-learned rule not appropriately applied is a
case of override failure. As the rule is less and less well instantiated, at some
point, it is so poorly compiled that it is not a candidate for retrieval in the
override process and thus the override error becomes an error due to a mind-
ware gap. In short, a process error has turned into a knowledge error.

The next couple of figures serve to illustrate the interdependence and
complex relationships between mindware presence, detection and sustained
override capability. Figure 2 is organised around a continuum reflecting how
well the mindware in the relevant problem has been instantiated. At the far
left of the continuum in Figure 2, the mindware is totally absent. As the rele-
vant mindware becomes practised and stored in long-term memory, it
becomes available for retrieval by Type-2 processes. In the middle of the con-
tinuum (mindware learned but not fully automatised), the mindware must be
retrieved by expensive Type-2 processing (see the upper right of Figure 1) in
order to aid in creating what might be called a computed response to com-
pete with what might be called the intuitive response that is naturally emitted
by System 1 processes.

20ur taxonomy (see Stanovich, West, & Toplak, 2016) emphasises on the role of conflict and mindware
because of our focus on modelling heuristics and biases tasks, many of which were designed to cause
processing conflict. There are other ways to organise a taxonomy of rational thinking tasks. For example,
Shah and Oppenheimer (2008) outline a taxonomy in terms of how heuristics bring about effort reduction
in various tasks.

3t i critically important to note that all of these figures are task specific for a given subject. The degree
of instantiation of mindware will vary from task to task within a subject and from subject to subject within
a task.
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Figure 2. Processing states on the mindware continuum.

On the far right of the continuum (mindware automatised), the relevant
mindware has been so overly practised that it has entered System 1 and is
triggered automatically and autonomously. That is, it is the normative
response that trips an automatic monitoring system (perhaps a feeling-of-
rightness mechanism of the type discussed by Thompson, 2009, 2014) to
such an extent that it can trigger a response. This mindware is so overly prac-
tised that it can often automatically trump the intuitive response from System
1 without a taxing override procedure needing to be invoked. In short, the far
right of the continuum is the area where no sustained override is needed.
Subjects will almost always get the problem correct while in this part of the
continuum - when the normative mindware is so well instantiated. This situa-
tion contrasts sharply with that on the far left of the continuum. Here, the
mindware is so little practised that no conflict detection will occur and the
subject will always make an error due to a mindware gap. Override of the
miserly response is not possible, because the mindware is not instantiated
well enough for the necessity of override to be detected.

The middle section of the figure represents the zone of conflict between
System 1 processes priming a miserly response and those priming a norma-
tive response. Here, whether the subject responds correctly or not will
depend on the success of sustained override. This zone of conflict is defined
by the area demarcated by thresholds A and B on the mindware instantiation
continuum. To the left of dotted line A, the mindware is not well enough
instantiated to prime a superior (that is, normative) response. To the right of
dotted line A and to the left of dotted line B, the mindware is instantiated
enough to activate some response priming but not enough to automatically
trigger a normative response. To the right of dotted line B is the area dis-
cussed before, where an automatised normative response trumps the intui-
tive response.
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It is important to note that Figure 2 illustrates that the probability of detec-
tion and the degree of mindware instantiation will be highly correlated. This
theoretical conjecture is supported by a finding of Frey, Johnson, and De
Neys (2018). They found that poor performance on no-conflict versions of
heuristics and biases tasks (a measure of mindware instantiation) predicted
detection failure on conflict versions of the same task. That the probability of
detection and the degree of mindware instantiation will be highly correlated
illustrates one insufficiently appreciated aspect of these tasks: knowledge con-
siderations and processing considerations are very difficult to separate in many
of the heuristics and biases tasks that involve conflict.

Further differentiation of heuristics and biases tasks: five different
processing states

Figure 3 presents the logic of heuristics and biases tasks in even more detail.
Here, the four letters W through Z mark the criterion values on the mindware
continuum that help define five different processing states. Criterion W marks
the place on the mindware instantiation continuum where conflicts become
possible. To the left of this criterion, the mindware is so poorly learned that it
should be considered absent and hence no conflict detection is possible. Con-
flict detection - that is, detection of a conflict between an intuitive (miserly)
response and learned normative rules — is possible to the right of criterion W.
However, conflict is only actually detected to the right of criterion X (by this
particular subject on this particular task, see footnote 3). This criterion creates
an area (to the right of W and to the left of X), where a computed normative
response is possible because the mindware is there for retrieval, but no con-
flict is detected and hence no sustained override is even attempted. This
processing state represents what might be called a detection error.

X System 1 Normative
Zone of Detection Error Zone of Conflict: Zone of Conflict- Response Dominates.
Mo Conflict Override Difficult Override Easy Miserly Response

Ermor: Normative Cormeet
Fuaspimse 18 Poasibis, Emor Dus ta Cvaride Successtul Override Respanae Viry
Bk Connitat Falkare is Liksty Likely; Goeract ik
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El Due % I
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Figure 3. Processing states on the mindware continuum.
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Conflict detection is more probable to the right of criterion X in Figure 3.
This makes override a possibility in that part of the graphic. Criterion Y demar-
cates successful from unsuccessful sustained override. To the left of criterion Y
(and to the right of X) is the processing state that De Neys has explored in
numerous studies (De Neys, 2006a, 2006b, 2014; De Neys & Franssens, 2009;
De Neys & Glumicic, 2008; see also, Thompson & Johnson, 2014). His research
group demonstrated, with several heuristics and biases tasks, that various
implicit measures of performance (decision latencies, unannounced recall,
brain activation, autonomic arousal) indicated that conflict is sometimes
detected even in cases where a subject did not successfully override the intui-
tive response.

It is important to note that in the heuristics and biases literature, some pre-
vious theorists have collapsed two areas in Figure 3 (the two areas demar-
cated by criterion X) - calling both “failure to override”. They are
differentiated here because it is important to distinguish sustained override
failure — where Type-2 processing loses out to Type-1 processes in a conflict
of discrepant outputs — from situations where Type-2 processing is not
engaged at all.

Continuing rightward in Figure 3, to the right of criterion Y and to the left
of Z is the area of the mindware instantiation continuum where override is
likely to be successful. Well-instantiated mindware makes detection of conflict
easy and highly probable. The well-instantiated mindware also makes sus-
tained retrieval during the simulation process easy, leading to a high proba-
bility of successful override. Finally, to the right of criterion Z is the processing
state that we described before and illustrated in Figure 2 — where no process-
ing override of the intuitive response is necessary because the normative
mindware is so well automated that it is the dominant response.

To summarise Figure 3: the area to the left of W denotes an error due to
missing mindware; the area between W and X an error due to detection fail-
ure; between X and Y an error due to override failure; between Y and Z a cor-
rect response achieved by sustained override; and to the right of Z a correct
response due to automatic activation of the normative response from System
1. Moving from left to right in Figure 3, the likelihood of deriving a correct
response increases as the mindware becomes more automatised, conflict
detection becomes easier, and override becomes easier as well. A novel con-
tribution of Figure 3 is that of demonstrating how the cognitive failures (and
successes) differ as we move along the continuum from left to right.

The figure also illustrates how the degree of mindware instantiation is
strongly related to the probability of successful detection and override. This is
the reason why heuristics and biases tasks cannot be taken as pure process-
ing indicators and why errors on such tasks cannot be unambiguously attrib-
uted to miserly processing. Additionally, it illustrates why correct responses
are not necessarily the result of computationally expensive cognition.
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Although no heuristics and biases task can be taken as a specific and
unique indicator of a particular type of error, the three error types illustrated
in Figure 3 will be differentially associated with different types of tasks in the
literature. For example, the failure of sustained override area in the figure (the
area between X and Y) would be strongly indicated by subpar performance
on tasks tapping aspects of self control and tasks that assess the temporal dis-
counting of reward (Loewenstein, Read, & Baumeister, 2003). An error in the
classic bat-and-ball problem from Frederick’s (2005) CRT will often occur
because of problems with conflict detection (the area between W and X).
Finally, some tasks in the heuristics and biases literature are most often failed
because of mindware gaps (the area to the left of W). Base-rate neglect and
falling prey to the gambler’s fallacy are probably most often a result of the
absence of the mindware of probabilistic thinking (Stanovich, 2010, 2011).

The dependence between knowledge and process in heuristics and biases
tasks can also be viewed from the hierarchical logic of Figure 4, adapted from
a discussion in Stanovich and West (2008). This figure is constructed in terms
of which paths lead to the incorrect, miserly response and which paths lead
to the normative response. Figure 4 shows that detection and override are

4 N\
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Yes | 2 Miserly Response
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to Carry Out Override?
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( Does the Person Have A from System 1 [ ]
Decoupling Capacity to Sustain
Override?
. _ y,
Yes No -
v Miserly Response
Normative Response Path#3 [ ¢
Computed Via Type 2
Processing [

Figure 4. Dependence between knowledge and process in heuristics and biases tasks.
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dependent on knowledge and that override is dependent on detection. We
can see this by proceeding downward, sequentially. The question addressed
in the first stage of the framework, at the top of Figure 4, is whether, for a
given task and subject, the mindware is available to carry out override
(whether relevant declarative knowledge is available to be substituted for the
intuitive response). If the relevant mindware is not available, then the person
will produce a miserly response.

If the relevant mindware is in fact available, then the next question that
becomes operative is whether or not the person detects the need to override
the intuitive response. Even if the relevant mindware is present, if the subject
does not detect any reason to override the intuitive response, then it will be
emitted (this is path #2 to the intuitive response as labelled in the figure).

If the relevant mindware is present and if an alternative to the intuitive
response has been noted, the question then becomes whether or not the
task requires sustained inhibition (cognitive decoupling) in order to carry out
the override of the intuitive response. If the normative mindware is so auto-
mated that it trumps the intuitive response, then no override is needed and a
normative response is emitted.

In contrast, if the normative mindware is not instantiated in System 1 and if
the task requires sustained decoupling in order to carry out override, then we
must ask whether the subject has the cognitive capacity that will be neces-
sary. If so, then the normative response will be given via Type-2 decoupling
and simulation.* If not, then the intuitive response will be given (path #3 to
the intuitive response in the figure) — despite the availability of the relevant
mindware and the recognition of the need to use it. In terms of Figure 3, path
#1 represents the area to the left of criterion W, path #2 represents the area
immediately to the left of criterion X and path #3 represents the area immedi-
ately to the left of criterion Y.

Figure 4 captures the dependence between mindware, detection and
override. It makes clear that missing mindware renders questions about
detection and override irrelevant. Mindware present at some minimal level at
least provides the possibility of a detection error (or a correct response). The
degree of mindware presence that enables (possible) detection then, indi-
rectly, enables the possibility of sustained override (or override failure).

Figure 4 also illustrates why correct responses are not necessarily slow and
why incorrect responses are not necessarily fast. The five heuristics and biases
response types are labelled A through E in Figure 4 (A, B, C, for error
responses, and D and E for correct responses). Table 1 presents a 2 x 2 matrix

“Because it is tangential to the present discussion, | have not modelled another possibility suggested by
Risen (2016) and by Stanovich (2004) - that successful Type-2 override outcomes may be rejected by a
reflective third-order judgement (see Risen, 2016, on acquiescence, and Stanovich, 2004, pp. 228-243, on
rational integration).
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Table 1. Classification of errors and correct response types in Figure 4 as either fast or
slow responses.

Fast response Slow response

Incorrect response  A: Mindware absent C: Override failure
B: Detection failure
Correct response  D: Automatised normative response stored E: Normative response after
in System 1 successful override

crossing response accuracy with speed. The important thing to note is that
there is a response type in each of the four cells represented. Fast incorrect
responses can occur in two ways — when the relevant normative mindware is
absent (A) or when the subject fails to detect the possibility of a response
other than the miserly one (B). But slow error responses can occur as well —
when override is attempted but fails (C). Optimal responses will indeed occur
when the normative response is given after successful sustained override (E).
But fast correct responses can occur as well — when the normative response is
stored in System 1 and triggers automatically (D).

The framework outlined in Table 1 explicates the finding of Stupple, Pitch-
ford, Ball, Hunt, and Steel (2017) that in the CRT the correlation between
response time and accuracy is seriously reduced by “variance arising from
responses that are neither correct analytic answers nor incorrect intuitive
answers” (p. 15). This variance arising from responses that are neither correct
analytic answers nor incorrect intuitive answers is represented by cells C and
D in Table 1 - incorrect responses due to override failure (C) and correct
responses due to normatively correct responses that are automatically trig-
gered from System 1 (D).

Summary and research implications

Heuristics and biases tasks have been widely employed to assess the extent to
which subjects engage in miserly information processing. The theoretical
inferences made from correct and incorrect responding on such tasks have
been overly simplified, however. It is not the case that making an error on
such tasks can be unambiguously classified as indicating miserly processing.
Likewise, correct responding on such tasks is not necessarily the result of
computationally expensive processing.

That neither of these interpretations of responses on heuristics and biases
tasks follow is clear from the framework developed here. That framework
identified five processing states that are possible in most heuristics and biases
tasks. Three of the states lead to response errors and two lead to correct
responding. Because an error on such tasks may result from missing mind-
ware in addition to miserly processing, an error does not unambiguously indi-
cate that it was miserly processing rather than a mindware problem that was
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the prime cause of the error. Even if it could be determined that mindware
gaps were not responsible, the error could still result from two different proc-
essing states that differ somewhat in how miserly they are. The error might
have resulted from a miserly default that was left uncorrected. Alternatively,
the error might have resulted from an override failure as defined in the model
in Figure 3: the struggle between conflicting intuitive and normative
responses in which sustained override was not achieved (C in Figure 4 and
Table 1). Failure of sustained override represents a less miserly tendency than
does an unchecked default to the miserly response served up by the autono-
mous mind.

A parallel ambiguity also complicates the inferences that can be made
from correct responding on heuristics and biases tasks. Such responding can
eventuate from successfully sustained override or from the automatic trigger-
ing of overlearned mindware from System 1, as indicated in Figure 1. This is
why it cannot be inferred that all correct responses on such tasks will neces-
sarily be slow.

In summary, normative responding on heuristics and biases tasks is multi-
ply determined and incorrect responding also can result from a variety of
information processing defects.” The model presented here identifies three
processing defects: inadequately learned mindware; failure to detect the
necessity of overriding the miserly response; and failure to sustain the over-
ride process once initiated. These defects are intertwined in heuristics and
biases tasks, however. For example, mindware overlearning facilitates detec-
tion and makes sustained override easier — thus the degree of mindware
instantiation is strongly related to the probability of successful detection and
override. Treating these tasks as pure indicators of miserly processing is
unwarranted. Errors on them cannot be unambiguously attributed to miserly
processing — and correct responses are not necessarily the result of computa-
tionally expensive cognition.

Acknowledgments

Valuable comments on this manuscript were received from Wim De Neys, Jonathan
Evans, Valerie Thompson, Maggie Toplak, and Richard West.

*My purpose here has been to clarify some of the interrelationships among the concepts underlying
miserly processing. Specifically, the dependence of the processing operations of detection and override
on the presence of mindware has been the focus. The implications of mindware presence being a continu-
ous quantity were of particular importance and these were explored in detail. My purpose was not to
adjudicate all of the contentious issues surrounding the dual-process meta-theory, which would need a
much longer and fleshed-out treatment. Nevertheless, regarding these larger issues, | can anticipate that
some readers may see the clarifications outlined here as making dual-process theory less parsimonious.
This is a valid worry, but | feel that not all of the points raised here really increase the theoretical degrees
of freedom as much as they make the methods of a dual-process-based experiment a little more cumber-
some. For example, a clear implication of the present essay is that we must measure the presence of the
relevant mindware in order to understand the exact locus of a response error.



THINKING & REASONING (&) 441

Disclosure statement

No potential conflict of interest was reported by the author.

References

Achtziger, A., & Alos-Ferrer, C. (2014). Fast or rational? A response-times study of Bayes-
ian updating. Management Science, 60, 923-938.

Ainslie, G. (2001). Breakdown of will. Cambridge: Cambridge University Press.

Arkes, H. R. (2016). A levels of processing interpretation of dual-system theories of
judgment and decision making. Theory & Psychology, 26, 459-475.

Bago, B., & De Neys, W. (2017). Fast logic? Examining the time course assumption of
dual process theory. Cognition, 158, 90-109.

Clark, A. (2001). Mindware: An introduction to the philosophy of cognitive science. New
York, NY: Oxford University Press.

Dawes, R. M. (1976). Shallow psychology. In J. S. Carroll & J. W. Payne (Eds.), Cognition
and social behavior (pp. 3-11). Hillsdale, NJ: Erlbaum.

Dawkins, R. (1982). The extended phenotype. New York, NY: Oxford University Press.

De Neys, W. (2006a). Automatic-heuristic and executive-analytic processing during rea-
soning: Chronometric and dual-task considerations. Quarterly Journal of Experimen-
tal Psychology, 59, 1070-1100.

De Neys, W. (2006b). Dual processing in reasoning — Two systems but one reasoner.
Psychological Science, 17, 428-433.

De Neys, W. (2012). Bias and conflict: A case for logical intuitions. Perspectives on Psy-
chological Science, 7, 28-38.

De Neys, W. (2014). Conflict detection, dual processes, and logical intuitions: Some clar-
ifications. Thinking & Reasoning, 20, 169-187.

De Neys, W. (Ed.). (2018). Dual process theory 2.0. London: Routledge.

De Neys, W., & Franssens, S. (2009). Belief inhibition during thinking: Not always win-
ning but at least taking part. Cognition, 113, 45-61.

De Neys, W., & Glumicic, T. (2008). Conflict monitoring in dual process theories of think-
ing. Cognition, 106, 1248-1299.

de Sousa, R. (2007). Why think? Evolution and the rational mind. Oxford: Oxford Univer-
sity Press.

Einhorn, H. J., & Hogarth, R. M. (1981). Behavioral decision theory: Processes of judg-
ment and choice. Annual Review of Psychology, 32, 53-88.

Evans, J. St. B. T. (2007). On the resolution of conflict in dual process theories of reason-
ing. Thinking and Reasoning, 13, 321-339.

Evans, J. St. B. T. (2008). Dual-processing accounts of reasoning, judgment and social
cognition. Annual Review of Psychology, 59, 255-278.

Evans, J. St. B. T. (2010). Thinking twice: Two minds in one brain. Oxford: Oxford Univer-
sity Press.

Evans, J. St. B. T. (2014). Reasoning, rationality and dual processes. London: Psychology Press.

Evans, J. St. B. T. (2018). Dual process theory: Perspectives and problems. In W. De Neys
(Ed.), Dual process theory 2.0 (pp. 137-156). London: Routledge.

Evans, J. St. B. T, & Stanovich, K. E. (2013). Dual-process theories of higher cognition:
Advancing the debate. Perspectives on Psychological Science, 8, 223-241.

Ferreira, M. B,, Mata, A., Dokin, C,, Sherman, S. J., & lhmels, M. (2016). Analytic and heu-
ristic processes in the detection and resolution of conflict. Memory & Cognition, 44,
1050-1063.



442 K. E. STANOVICH

Fodor, J. A. (1983). The modularity of mind. Cambridge, MA: MIT University Press.

Frederick, S. (2005). Cognitive reflection and decision making. Journal of Economic Per-
spectives, 19, 25-42.

Frey, D., Johnson, E., & De Neys, W. (2018). Individual differences in conflict detection
during reasoning. Quarterly Journal of Experimental Psychology, 71.

Gilbert, D. T. (2006). Stumbling on happiness. New York, NY: Alfred A. Knopf.

Hull, D. L. (2001). Science and selection: Essays on biological evolution and the philosophy
of science. Cambridge: Cambridge University Press.

Jimenez, N. B., Rodriguez-Lara, I, Tyran, J., & Wengstrom, E. (2018). Thinking fast, think-
ing badly. Economics Letters, 162, 41-44.

Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice Hall.

Kahneman, D. (2003). A perspective on judgment and choice: Mapping bounded ratio-
nality. American Psychologist, 58, 697-720.

Kahneman, D. (2011). Thinking, fast and slow. New York, NY: Farrar, Straus & Giroux.

Kahneman, D., & Frederick, S. (2002). Representativeness revisited: Attribute substitu-
tion in intuitive judgment. In T. Gilovich, D. Griffin, & D. Kahneman (Eds.), Heuristics
and biases: The psychology of intuitive judgment (pp. 49-81). New York, NY: Cam-
bridge University Press.

Kahneman, D., & Klein, G. (2009). Conditions for intuitive expertise: A failure to dis-
agree. American Psychologist, 64, 515-526.

Kahneman, D., & Tversky, A. (1972). Subjective probability: A judgment of representa-
tiveness. Cognitive Psychology, 3, 430-454.

Kahneman, D., & Tversky, A. (1973). On the psychology of prediction. Psychological
Review, 80, 237-251.

Kurzban, R., Duckworth, A., Kable, J. W., & Myers, J. (2013). An opportunity cost model
of subjective effort and task performance. Behavior and Brain Sciences, 36, 661-679.

La Berge, D., & Samuels, S. (1974). Toward a theory of automatic information process-
ing in reading. Cognitive Psychology, 6, 293-323.

Li, M., & Chapman, G. B. (2009). “100% of anything looks good”: The appeal of one hun-
dred percent. Psychonomic Bulletin & Review, 16, 156-162.

Li, N., van Vugt, M., & Colarelli, S. (2018). The evolutionary mismatch hypothesis:
Implications for psychological science. Current Directions in Psychological Science,
27,38-44.

Liberali, J. M., Reyna, V. F., Furlan, S., Stein, L. M., & Pardo, S. T. (2012). Individual differ-
ences in numeracy and cognitive reflection, with implications for biases and falla-
cies in probability judgment. Journal of Behavioral Decision Making, 25, 361-381.

Loewenstein, G. F. (1996). Out of control: Visceral influences on behavior. Organiza-
tional Behavior and Human Decision Processes, 65, 272-292.

Loewenstein, G. F., Read, D., & Baumeister, R. (Eds.). (2003). Time and decision: Economic
and psychological perspectives on intertemporal choice. New York, NY: Russell Sage.

Moore, R. (2017). Fast or slow: Sociological implications of measuring dual-process cog-
nition. Sociological Science, 4, 196-223.

Moors, A., & De Houwer, J. (2006). Automaticity: A theoretical and conceptual analysis.
Psychological Bulletin, 132, 297-326.

Navon, D. (1989). The importance of being visible: On the role of attention in a mind
viewed as an anarchic intelligence system. European Journal of Cognitive Psychol-
ogy, 1,191-238.

Newman, I. R,, Gibb, M., & Thompson, V. A. (2017). Rule-based reasoning is fast and
belief-based reasoning can be slow: Challenging current explanations of belief-bias



THINKING & REASONING (&) 443

and base-rate neglect. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 43, 1154-1170.

Nozick, R. (1993). The nature of rationality. Princeton, NJ: Princeton University Press.

Oaksford, M., & Chater, N. (2014). Probabilistic single function dual process theory and
logic programming as approaches to non-monotonicity in human vs. artificial rea-
soning. Thinking & Reasoning, 20, 269-295.

Pennycook, G., Fugelsang, J. A., & Koehler, D. J. (2015). What makes us think? A three-
stage dual-process model of analytic engagement. Cognitive Psychology, 80, 34-72.

Perkins, D. N. (1995). Outsmarting 1Q: The emerging science of learnable intelligence.
New York, NY: Free Press.

Posner, M. |, & Snyder, C. (1975). Facilitation and inhibition in the processing of signals.
In P. Rabbitt & S. Dornic (Eds.), Attention and performance (Vol. 5, pp. 669-682).
London: Academic Press.

Rand, D. G, Tomlin, D., Bear, A, Ludvig, E. A., & Cohen, J. D. (2018). Cyclical population
dynamics of automatic versus controlled processing: An evolutionary pendulum.
Psychological Review, 124(5), 626-642.

Reyna, V. F., & Brainerd, C. J. (2011). Dual processes in decision making and devel-
opmental neuroscience: A fuzzy-trace model. Developmental Review, 31, 180-
206.

Richerson, P. J.,, & Boyd, R. (2005). Not by genes alone: How culture transformed human
evolution. Chicago, IL: University of Chicago Press.

Risen, J. L. (2016). Believing what we do not believe: Acquiescence to superstitious
beliefs and other powerful intuitions. Psychological Review, 123, 182-207.

Shah, A. K., & Oppenheimer, D. M. (2008). Heuristics made easy: An effort-reduction
framework. Psychological Bulletin, 134, 207-222.

Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information
processing: Il. Perceptual learning, automatic attending, and a general theory.
Psychological Review, 84, 127-190.

Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of Eco-
nomics, 69, 99-118.

Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological
Review, 63, 129-138.

Sinayev, A., & Peters, E. (2015). Cognitive reflection vs. calculation in decision making.
Frontiers in Psychology, 6, 532.

Sloman, S. A. (1996). The empirical case for two systems of reasoning. Psychological Bul-
letin, 119, 3-22.

Slovic, S., & Slovic, P. (2015). Numbers and nerves: Information, emotion, and meaning in
a world of data. Corvallis: Oregon State University Press.

Stanovich, K. E. (1999). Who is rational? Studies of individual differences in reasoning.
Mahwah, NJ: Erlbaum.

Stanovich, K. E. (2004). The robot’s rebellion: Finding meaning in the age of Darwin.
Chicago, IL: University of Chicago Press.

Stanovich, K. E. (2010). Decision making and rationality in the modern world. New York,
NY: Oxford University Press.

Stanovich, K. E. (2011). Rationality and the reflective mind. New York, NY: Oxford Univer-
sity Press.

Stanovich, K. E., & Toplak, M. E. (2012). Defining features versus incidental correlates of
Type 1 and Type 2 processing. Mind & Society, 11, 3-13.

Stanovich, K. E., & West, R. F. (2008). On the relative independence of thinking biases
and cogpnitive ability. Journal of Personality and Social Psychology, 94, 672-695.



444 K. E. STANOVICH

Stanovich, K. E.,, West, R. F., & Toplak, M. E. (2016). The Rationality quotient: Toward a test
of rational thinking. Cambridge, MA: MIT Press.

Stich, S. P. (1990). The fragmentation of reason. Cambridge: MIT Press.

Stupple, E. J,, Pitchford, M., Ball, L. J., Hunt, T., & Steel, R. (2017). Slower is not always
better: Response-time evidence clarifies the limited role of miserly information
processing in the Cognitive Reflection Test. PLoS One, 12(11), e0186404. Retrieved
from https://doi.org/10.1371/journal.pone.0186404.

Sun, R. (2015). Interpreting psychological notions: A dual-process computational the-
ory. Journal of Applied Research in Memory and Cognition, 4, 191-196.

Taylor, S. E. (1981). The interface of cognitive and social psychology. In J. H. Harvey
(Ed.), Cognition, social behavior, and the environment (pp. 189-211). Hillsdale, NJ:
Erlbaum.

Thaler, R. H. (2015). Misbehaving: The making of behavioral economics. New York, NY:
Norton.

Thompson, V. A. (2009). Dual-process theories: A metacognitive perspective. In J. Evans
& K. Frankish (Eds.), In two minds: Dual processes and beyond (pp. 171-195). Oxford:
Oxford University Press.

Thompson, V. A. (2014). What intuitions are... and are not. In B. Ross (Ed.), Psychology of
learning and motivation (Vol. 60, pp. 35-75). New York, NY: Elsevier.

Thompson, V. A, & Johnson, S. C. (2014). Conflict, metacognition, and analytic thinking.
Thinking & Reasoning, 20, 215-244.

Thompson, V. A., & Morsanyi, K. (2012). Analytic thinking: Do you feel like it? Mind &
Society, 11,93-105.

Thompson, V. A., Prowse Turner, J. A, & Pennycook, G. (2011). Intuition, reason, and
metacognition. Cognitive Psychology, 63, 107-140.

Tomlin, D., Rand, D. G,, Ludvig, E. A., & Cohen, J. D. (2015). The evolution and devolution
of cognitive control: The costs of deliberation in a competitive world. Scientific
Reports, 5, 11002.

Toplak, M. E., West, R. F., & Stanovich, K. E. (2011). The Cognitive Reflection Test as a
predictor of performance on heuristics and biases tasks. Memory & Cognition, 39,
1275-1289.

Toplak, M. E., West, R. F.,, & Stanovich, K. E. (2014). Assessing miserly processing: An
expansion of the Cognitive Reflection Test. Thinking & Reasoning, 20, 147-168.

Trippas, D., Handley, S. J., Verde, M. F., & Morsanyi, K. (2016). Logic brightens my day:
Evidence for implicit sensitivity to logical validity. Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, 42, 1448-1457.

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases.
Science, 185, 1124-1131.

Wang, L. (2009). Money and fame: Vividness effects in the National Basketball Associa-
tion. Journal of Behavioral Decision Making, 22, 20-44.

Westbrook, A., & Braver, T. S. (2015). Cognitive effort: A neuroeconomic approach.
Cognitive Affective and Behavioral Neuroscience, 15, 395-415.


https://doi.org/10.1371/journal.pone.0186404

	Abstract
	Introduction
	Miserly processing and human evolution
	Miserly processing in benign and hostile environments
	Heuristics and biases tasks were designed to assess costly miserly defaults in hostile worlds
	The importance of knowledge structures (mindware) in understanding heuristics and biases tasks
	The interdependence of mindware, detection and override
	Further differentiation of heuristics and biases tasks: five different processing states
	Summary and research implications
	Acknowledgments
	Disclosure statement
	References



