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The domain specificity and generality of
overconfidence: Individual differences
in performance estimation bias

RICHARD F. WEST
James Madison University, Harrisonbury, Virginia

and

KEITH E. STANOVICH
University of Toronto, Toronto, Ontario, Canada

One hundred twenty-three college students performed a knowledge assessment task and a game
of motor skill in which they had to predict their performance before each block of trials. There was
a bias in the direction of overconfidence on both tasks, even though the latter involved the motor do-
main, did not require the use of numeric probabilities, and allowed predictions to be made by using
an aggregate judgment made in a frequentist mode. An analysis of individual differences indicated
that there was considerable domain specificity in confidence judgments. However, participants who
persevered in showing overconfidence in the motor task—despite previous feedback revealing their
overconfident performance predictions—were significantly more overconfident in the knowledge
calibration task than were participants who moderated their motor performance predictions so as
to remove their bias toward overconfidence. The latter finding is consistent with explanations of
overconfidence effects that implicate mechanisms with some degree of domain generality.

Overconfidence in performance estimation has been
observed in a variety of different paradigms and domains.
For example, overconfidence has been observed in per-
ceptual judgments (Baranski & Petrusic, 1995), predic-
tion of sports outcomes (Ronis & Yates, 1987), reading-
comprehension monitoring (Glenberg & Epstein, 1987),
judging the sex of handwriting samples (Schneider, 1995),
prediction of one’s own behavior or life outcomes (Hoch,
1985), economic forecasts (Braun & Yaniv, 1992), and
of course in the much-investigated knowledge assess-
ment paradigm (e.g., Koriat, Lichtenstein, & Fischhoff,
1980; Lichtenstein, Fischhoff, & Phillips, 1982). The
effect has been obtained from subject samples in a vari-
ety of different countries (Lee et al., 1995; Yates et al,,
1989) and in subject samples of adolescents as well as
adults (Newman, 1984). Although the finding of an over-
confidence bias can be substantially modified by vari-
ables such as item difficulty,! task type, and expertise
(Keren, 1991; Ronis & Yates, 1987; Schneider, 1995), it
is so ubiquitous that it is routinely classified as a perva-
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sive cognitive bias (Arkes, 1991; Baron, 1994; Fischhoff,
1982).

Despite this overall finding of overconfidence on many
tasks, performance across a sample of participants is al-
most always characterized by enormous variability. It is
almost always the case that some participants show no
global bias toward overconfidence. Why do these sub-
jects not display the characteristic bias? Do they not
share a widely prevalent motivation to make self-serving
attributions? Do they not share a characteristic bias in
translating subjective uncertainties into an appropriately
calibrated probability scale? The answers to such ques-
tions are completely unknown, because although over-
confidence effects have been found in a variety of dif-
ferent domains, individual differences in the effect and
their correlates have generally remained unexplored (see
Stanovich, in press).

The relative neglect of individual differences is unfor-
tunate, because patterns of individual differences displayed
across tasks may well have implications for contending
theories of the overconfidence effect. For exampie, cogni-
tively based (as opposed to motivationally based) theories
have recently been ascendant as explanations of the over-
confidence effect in knowledge calibration. Theories em-
phasizing anchoring and adjustment effects (Block &
Harper, 1991), random error statistical models (Erev,
Wallsten, & Budescu, 1994; Pfeifer, 1994), response con-
traction toward a reference magnitude on a .50-1.00 prob-
ability scale (Poulton, 1994), and unrepresentative stim-
ulus sampling (Gigerenzer, Hoffrage, & Kleinbolting,
1991; Juslin, 1994) form only a partial list of the cogni-
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tively based theories that have recently been the subject
of intense investigation.

However, many of the cognitively based theories are
tied to stimulus-sampling and probability-scale issues
that are most likely to arise in the classic knowledge as-
sessment paradigm where subjects must make trial-by-
trial subjective probability estimates on a .50-1.00 scale
(see Keren, 1991; Poulton, 1994). Several of these cog-
nitive explanations in essence argue that the overconfi-
dence effect is artifactual (e.g., Pfeifer, 1994; Poulton,
1994). Likewise, proponents of ecological models view
overconfidence in this particular paradigm as artifactual
(Gigerenzer etal., 1991; Juslin, 1994). Interestingly, many
of these explanations—in being relatively closely tied
to the knowledge assessment paradigm—would need to
posit a different mechanism to account for overconfi-
dence in other domains? and in paradigms employing
aggregate rather than single-case probability judgments.
Such explanations would thus be called into question by
data suggesting that a common mechanism is operating
across tasks involving vastly different domains and having
vastly different response and cognitive requirements
(i.e., tasks not sharing characteristics such as .50-1.00
probability scales, anchoring opportunities, biased stimu-
lus sampling, use of a numerical probability scale, re-
liance on a single-case probability mode rather than an
aggregate judgment). The presence of correlated indi-
vidual differences among individuals who have per-
formed two tasks—one not containing the critical task
features-—would undermine cognitive theories requiring
certain domain and paradigm characteristics to explain
overconfidence.

In the experiment reported here, we investigated per-
formance in two very different domains: the much-
investigated knowledge assessment paradigm, and the
domain of motor performance. Confidence/accuracy re-
lationships in the motor domain have been examined be-
fore (see Harvey, 1994) but not in the context of parallel
performance on a knowledge assessment measure. In ad-
dition to tapping skills totally different from those re-
quired by the traditional almanac-type knowledge assess-
ment experiment, confidence in the motor task is assessed
without the use of a numerical probability scale and in an
aggregate frequentist mode rather than in a singular-
event probability mode (see Gigerenzer & Hoffrage,
1995)—that is, without many of the features that have
been found to artifactually magnify overconfidence (see
Keren, 1991; Poulton, 1994).

METHOD

Subjects

The subjects were 123 undergraduate students (33 males and 90 fe-
males) recruited through an introductory psychology subject pool at a
medium-sized state university. Their mean age was 19.3 years (5D =
4.4 years).

Tasks

Knowledge assessment. The methods and analyses used in this
task were similar to those emploved in the extensive literature on
knowledge calibration (Fischhoff, 1982; Koriat et al., 1980; Lichten-

stein, & Fischhoff, 1977; Ronis & Yates, 1987). Subjects answered 70
general knowledge questions in a two-choice choice format. Questions
were drawn from Zahler and Zahler’s (1988) book, Test Your Cultural
Literacy. An example question is the following: “What did Anton van
Leeuwenhoek invent? a. the microscope, b. the telescope.”

After answering each question, the subjects indicated their degree of
confidence in their answer on a six-point scale. The points on the scale
were .5, .6, .7, .8, .9, and 1.0, with the leftmost point (.5) labeled just
guessing and the rightmost point (1.0) labeled absolutely certain. The
subjects were given the following instructions:

In this task, we would like you to answer a series of multiple choice questions
on a variety of different topics. After choosing your answer, indicate on the
scale provided what you think the probability is that you answered the item
correctly. If you feel that you are absolutely certain your answer is correct, cir-
cle probability level 1.0. If you are just guessing, and have no idea what the
answer is, circle probability .5 (indicating 50/50 chance of being correct). If
you are not certain, but think that there are 9 chances out of ten that you are
correct, circle .9. If you are less certain than this, and think that there are 8
chances out of ten that you are correct, circle .8. If you are still less certain
than this, and think that there are 7 chances out of ten that you are correct. cir-
cle 7. If you are very uncertain, but still think that you are not just guessing,
and think that there are 6 chances out of ten that you are correct, circle .6.

Penny slide task. The penny slide task was a simple test of motor
skill, loosely modeled on a table shuffleboard game. The subjects sat
at the narrow end of a table (91.4 X 182.9 cm) and attempted to slide
pennies onto a strip on the table (marked with magic marker) located
154.2 cm from the end of the table and 112.3 ¢m from a “foul” line.
This strip was colored red with a magic marker, was 2.5 ¢cm wide, and
extended for a length of 45.7 cm across the table. A diagram of the
physical layout of the table is available from the authors. Pennies land-
ing on this strip were scored as 9 points (and demarcated by biack
magic marker lines). In front of and in back of the 9-point strip were
two 8-point strips each 2.5 cm wide. Subsequent 2.5-cm strips repre-
senting 7 points, 6 points, 5 points, etc. were placed in front of and in
back of each previous strip. Pennies landing in front of the front 1-
point strip and in back of the back 1-point strip were scored as zero.
When a penny landed on a line, the strip containing the majority of the
penny’s area determined the score.

The subjects were told that they would be attempting to slide pen-
nies onto the grid and have them stop on the center red stripe. The scor-
ing system was explained, and they were told to try to accumulate as
many points as possible. The subjects were given two practice slides to
get accustomed to the difficulty of the game. After each practice trial
(and after each subsequent trial), the experimenter announced the
score for that trial, removed the penny from the table, and recorded the
score. The subjects completed two blocks of 30 trials. The score for
each block was the total number of points accumulated across the 30
slides. Scores for each block could thus potentially range from 0 to
270; but the observed range for Block 1 was 43~160, and the observed
range for Block 2 was 57-159. As for the observed score, the predicted
score for each block could potentially range from 0 to 270. The range
of the predicted scores for Block 1 was 38-229, and the range of the
predicted scores for Block 2 was 23-193.

Prior to each block of 30 trials, the subjects predicted their perfor-
mance for that block by arranging 30 pennies on the table onto the
strips in an effort to mimic their subsequent performance for that
block. The sequence of tasks was thus: practice trials, predictions for
Block 1, the 30 Block 1 trials, predictions for Block 2, and the 30
Block 2 trials.

Procedure

Participants completed the tasks in a single session that lasted less
than an hour. They first filled out a demographics sheet, then com-
pleted the knowledge assessment task, and then completed the penny
slide task.

RESULTS
Knowledge Calibration

Performance on the knowledge assessment task mir-
rored that previously reported in the published literature



in all essential aspects. The mean accuracy rate across
the 70 questions was 64.9%, and the mean confidence
rating was 75.2%. Several measures of knowledge cali-
bration were calculated (Yates et al., 1989, Ronis & Yates,
1987, and Schneider, 1995, should be consulted for dis-
cussions of the computational and conceptual details of
these indices). The first such index—computationally
the simplest—will be our main focus, because it directly
assesses the phenomenon on which we wish to focus:
overconfidence. Termed the measure of over/undercon-
fidence by Lichtenstein and Fischhoff (1977) and bias
by Yates et al. (1989), it is simply the mean percentage
confidence judgment minus the mean percentage cor-
rect. The mean bias score in our sample was 10.3% (SD =
8.8), significantly different from zero [1(122) = 13.04,
p <.001]. The positive sign of the mean score indicates
that the sample as a whole displayed overconfidence, the
standard finding with items of this type. A positive bias
score (in the direction of overconfidence) was displayed
by 108 (87.8%) of the 123 participants. The calibration
curve for the task was prototypical (Lichtenstein & Fisch-
hoff, 1977; Yates et al., 1989). The mean proportion of
questions answered correctly in the 1.0 confidence cate-
gory was .875. Likewise, overconfidence was displayed
in the .9 category (.708 correct), .8 category (.649 correct),
.7 category (.575 correct), and .6 category (.581 correct).
In the .5 confidence category, the proportion of questions
answered correctly was .519.

Calibration-in-the-small (see Yates et al., 1989), reso-
lution (Yates et al., 1989), and a normalized discrimina-
tion index (Yaniv, Yates, & Smith, 1991) were calculated
for each subject and averaged across subjects. These val-
ues, .041, .033, and .149, respectively, were in line with
those observed in previous studies (Schneider, 1995; Yates
et al., 1989). Calibration-in-the-small (termed simply
calibration by Lichtenstein & Fischhoff, 1977) refers to
the mean squared difference between the probability
label of the category and the percentage correct in that
category across all the categories (see Yates etal., 1989).
Resolution is the mean squared difference between the
percentage correct in each category and the overall mean
correct percentage summed across all the categories (see
Yates et al., 1989). It reflects “the ability of the respon-
der to discriminate different degrees of subjective un-
certainty by sorting the items into categories whose re-
spective percentages correct are maximally different from
the overall percentage correct” (Lichtenstein & Fisch-
hoff, 1977, p. 162). The normalized discrimination index
(see Yaniv et al., 1991) is a resolution measure that takes
into account the total variance in the outcome variable.
[n summary, on every index of calibration performance,
this group of subjects mirrored the trends in the pub-
lished literature.

There was a moderate degree of internal consistency
within the knowledge calibration task. The overconfi-
dence effect (bias statistic) was calculated for both the
even and odd items separately, and the split-half reli-
ability (Spearman-Brown corrected) for the bias score
was .71, a figure somewhat higher than that obtained by
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Schraw, Dunkle, Bendixen, and Roedel (1995). The
higher reliability of overconfidence bias in our study
probably resulted from the larger number of items used
in our investigation.

Penny Slide Performance

In Block 1 of the penny slide task, the mean predicted
score was 128.1 (SD = 40.2) and the mean attained score
was 98.2 (SD = 23.9). Thus, there was a substantial
29.9-point overconfidence effect [#(122) = 8.13, p <
.001]. The predicted scores of 95 of the 123 participants
(77.2% of the sample) were higher than their obtained
scores. Several indices other than mean difference also
indicated a strong overconfidence effect. For example,
subjects predicted that 16.6% of their slides would result
in scores of zero, whereas 36.9% of the actual trials re-
sulted in slides scoring zero.

On the second block of penny slide trials, the mean

predicted score was 115.0 (SD = 31.6) and the mean at-

tained score was 108.6 (SD = 22.6). Thus, the predicted
score on Block 2 was significantly lower than that on
Block 1 [#(122) = 3.70, p <.001], and the attained score
was significantly higher [¢#(122) = 4.97, p <.001]. Nev-
ertheless, on Block 2, there was still a statistically sig-
nificant overconfidence effect of 6.4 points [¢(122) =
2.11, p < .05]. Although participants adjusted their per-
formance expectations subsequent to Block 1, the ad-
justment was not enough to eliminate the overconfidence
effect. For example, although subjects predicted that more
trials would receive a score of zero in Block 2 (25.4%,
vs. the 16.6% predicted in Block 1), they still underpre-
dicted the number of such trials that actually occurred in
Block 2 (30.5%). Figure 1 presents the predicted and ob-
served frequencies for each of the score categories (0
through 9) on Block 1 (top) and Block 2 (bottom). The
shift toward lower overconfidence from Block 1 to Block 2
is apparent (especially in score category 0), as is the fail-
ure to entirely eliminate overconfidence.

Table 1 presents the intercorrelations of the predicted
and observed performance on each of the two blocks of
trials. Individual differences in performance were mod-
erately stable from Block 1 to Block 2 (» = .51, p <.001),
as were predicted scores (r = .43, p <.001). There was
a substantial correlation (r = .63, p <.001) between ac-
tual performance on Block 1 and the performance pre-
dicted for Block 2.

Although in an aggregate prediction task such as this
there are no strict parallels to calibration-in-the-small
and resolution (which require trial-by-trial prediction),
and although our focus was on the domain specificity or
generality of the overconfidence effect, alternative in-
dices of accuracy can be computed for the penny slide task.
For example, the correlation between expected category
frequencies and observed frequencies were computed as
were the summed absolute deviations between predicted
and observed category frequencies. Finally, the sum of
the squared deviations between predicted and observed
category frequencies was computed. All three of these
indices indicated improved accuracy of prediction in
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Figure 1. Proportion of predicted and observed scores in each score
category on the penny slide task for Block 1 (top) and Block 2 (bot-
tom). :

Block 2 as compared with Block 1. The correlation be-
tween predicted and observed category frequencies in-
creased (from .23 to .48), and the sum of the absolute de-
viations decreased (from 24.54 to 20.40), as did the sum
of squared deviations (from 125.85 to 77.77).

Bias Across Tasks

Cross-task commonalities in performance were ex-
plored by dividing the sample on the basis of a median
split of their bias scores on the knowledge assessment
task.3 As is indicated in Table 2, the low-overconfidence
group (n = 61) answered significantly more ques-
tions correctly than did the high-overconfidence group
(n = 62). Despite their superior performance, the low-
overconfidence group gave significantly lower (p <.001)
confidence ratings. As a result, the overall calibration
bias shown by the low overconfidence group (3.2%) was

substantially lower than that of the high overconfidence
group (17.2%).

The lower part of Table 2 presents the indicators of
performance on the penny slide task. Both groups per-
formed similarly on the penny slide task in both blocks
(both improved approximately 10 points from Block 1 to
Block 2). However, despite their similar performance,
the subjects who displayed high overconfidence on the
knowledge assessment task made higher predictions in
both blocks of the penny slide task than did the low-over-
confidence group, although the difference was not sta-
tistically significant in Block 1. Predictably, given these
trends, the bias was larger for the high-overconfidence
group in both blocks (but significantly so only in Block 2).
Interestingly, by Block 2, the subjects who displayed low
overconfidence on the knowledge assessment task had
completely eliminated their overconfidence bias (their
predictions displayed a slight underconfidence), whereas
the subjects who displayed high overconfidence on the
knowledge assessment task still displayed a 13-point
overconfidence effect on Block 2 that was significantly
different from zero [#(61) = 3.30, p <.01].

The final two variables listed in Table 2 illustrate two
further significant differences. The first variable is the
combined overconfidence effects from Block 1 and
Block 2, and the last variable is the difference between
the prediction for Block 2 and the observed performance
on Block 1. The latter variable, on which the two groups
displayed a significant difference (p < .01), reflects the
extent to which the subjects thought their performance
on the upcoming block would exceed their performance
on the previous one. The subjects who displayed low over-
confidence on the knowledge calibration task thought
that they would improve by 10 points in the next block,
and this was almost exactly the actual extent of their im-
provement. In contrast, the subjects who displayed high
overconfidence on the knowledge calibration task thought
that they would improve by 24 points on the next block.
However, their actual improvement was no more than
that of the other group (10 points).

The correlations displayed on the bottom row of Ta-
ble 1 converge with the results from the median split dis-
played in Table 2. There was a significant correlation
(p <.01) between the magnitude of the overconfidence
effect on the knowledge assessment task and the degree

Table 1
Intercorrelations Among the Primary Variables
Variable 1 2 3 4 5 6
Penny Slide Task
1. Block | predicted
2. Block 1 observed 27t
3. Block 2 predicted 43; 632
4. Block 2 observed .14 S1y 261
5. Block | overconfidence .83% -.323 05 —.16
6. Block 2 overconfidence .30% .25+ 763 —.43% .15
Knowledge Task
7. Overconfidence .10 05 .23t -.05 .07 .24%

*»<.05. tp<.0l
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Table 2 )
Mean Performance (With Standard Deviations) on the Penny Slide Task of
Subjects With Low (2 = 61) and High (r = 62) Overconfidence (OC)

Scores on the Knowledge Task
Low OC High OC
Variabie M SD M SD t value
Knowledge Task
% Correct 67.9 6.5 61.8 59 -5.45%
% Confidence 711 6.6 79.2 6.0 7.131
Overconfidence effect 3.2 49 17.2 53 15.28%
Penny Slide Task
Block | predicted 123.9 41.0 132.2 393 1.14
Block ! observed 97.9 223 98.5 25.6 0.14
Block 1 overconfidence 26.0 38.2 337 43.1 1.04
Block 2 predicted 107.7 31.2 1222 30.6 2.59*
Block 2 observed 108.3 20.3 108.3 249 0.12
Block 2 overconfidence -0.6 34.6 13.4 319 2.32*
OC Block I +OC Block 2 25.5 56.4 47.0 55.8 2.13*
B2 Predicted — Bl Observed 9.9 21.8 23.7 26.2 3.18¢

*p<.05. tp<.0l

of overconfidence on Block 2 of the penny slide task,*
but not with the degree of overconfidence on Block 1.

DISCUSSION

Analysis of penny slide performance indicated that there was an
overconfidence bias in predicting performance on this task. The effect
was much larger on the first block of trials but was still significant in
Block 2, after the participants had completed 32 trials of the penny
slide task. The demonstration of overconfidence in calibrating this task
is important because it is a motor task very different from the knowl-
edge judgments that have predominated in the literature on overconfi-
dence. Performance calibration on this task did not overtly employ the
use of subjective probabilities or response scales that might artifactu-
ally lead to response patterns suggesting overconfidence (see Poulton,
1994). Subjects simply arrayed the pennies on the table where they
thought they were going to land. To the extent that subjects operated in
a probabilistic mode at all, this prediction task allowed them to oper-
ate in a distributional or frequentist mode (Gigerenzer & Hoffrage. 1995;
Gigerenzer et al., 1991) and to make an aggregate judgment rather than
an on-line, trial-by-trial calibration. Both of these factors have been
shown to reduce overconfidence in the knowledge assessment paradigm
(Gigerenzer et al., 1991; Griffin & Tversky, 1992; Schneider, 1995;
but see Brenner, Koehler, Liberman, & Tversky, 1996). Thus, the subset
of cognitive explanations that can be invoked to account for overconfi-
dence on this task is much reduced in comparison with the knowledge
calibration situation. Such theories provide no principled way of explain-
ing correlations between overconfidence effects across the two tasks.

Nevertheless, more generic models—such as those which invoke do-
main general motivational mechanisms (Kunda, 1990)—received only
mixed support from these data. The magnitude of the overconfidence
effect displayed in Block I of the penny slide task was not significantly
related to the magnitude of the overconfidence effect displayed in
knowledge assessment (although the trend was in that direction). This
finding is consistent with the idea that there is considerable domain
specificity in the mechanisms generating overconfidence in the two
situations. Importantly, however, after one block’s worth of feedback,
overconfidence in subsequent performance on the penny slide game
was significantly related to overconfidence displayed in the knowledge
calibration task. Subjects who displayed low overconfidence in the
knowledge task displayed no bias in estimating penny slide performance
on Block 2, whereas subjects who displayed high overconfidence in
the knowledge task still displayed an overconfidence bias in penny
slide estimation even after a block of trials that had exposed their mis-
taken optimism. This finding may be viewed as support for a mecha-
nism with some degree of domain generality.

$p <.001. (All are two-tailed.)

Nevertheless, it must be noted that the degree of association between
knowledge assessment overconfidence and penny slide overconfidence
in Block 2, although significant, was low. When corrected for attenu-
ation that was due to the imperfect reliability of the variables, the cor-
relation (.34) is stiil modest. This figure is based on an estimate of the
penny slide reliability because of the lack of test~retest reliability for
the task. One further limitation of the study is that the fixed task order
utilized may have accentuated common variance. Finally, our study
does not adjudicate between models of the modest degree of domain
generality that was obtained. Nevertheless, the finding of even such
modest covariance is important in light of a substantial trend in the lit-
erature to treat the overconfidence effect in the knowledge calibration
paradigm as largely artifactual (Gigerenzer et al., 1991; Pfeifer, 1994;
Poulton. 1994).
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NOTES

1. Overconfidence is higher for item sets that are more difficult.

2. See Ferrell (1994) for an exception.

3. One consistent finding in the knowledge calibration literature that
creates a potential problem for individual difference analyses is that
the overconfidence effect is higher for more difficult items (Lichten-
stein & Fischhoff, 1977; Lichtenstein et al., 1982). If a sample is par-
titioned on the basis of subjects’ degree of overconfidence as calculated
with the traditional bias score—the mean percentage confidence judg-
ment minus the mean percentage correct—then the subjects displaying
low overconfidence will most likely have attained a higher percentage
correct on the knowledge measure. Thus, any variable that correlates
with knowledge will almost invariably display a negative correlation
with the degree of overconfidence. This was not a problem in the pres-
ent study, because the percentage of questions answered correctly on
the knowledge test was not associated with any component measure
(either observed or predicted scores) of the penny slide task.

4. This correlation increases from .24 to .34 when corrected for at-
tenuation that was due to unreliability under the assumption that the
penny slide task is as reliable as the knowledge assessment task. Fur-
ther, the correlation between overconfidence on the two tasks remained
significant after the percentage correct on the knowledge questions
and the actual performance on Block 2 were partialled out [ partial r =
18, F(1.122) = 3.92, p < .05].

5. Likewise, Lee et al. (1995) found no relation between knowledge
calibration bias and a nonperformance peer-comparison measure and
concluded that “the two phenomena rest on different mechanisms”
(p. 67).

(Manuscript received August 6, 1996;
revision accepted for publication January 10, 1997.)



